

Welcome to JavaScript XMPP Client’s documentation!

JSXC is a free XMPP client licensed under the MIT license.

This version of the documentation covering JSXC 4.0.0-alpha has been rendered at: Aug 25, 2021

Contents:

	Getting Started
	Requirements

	Installation

	Contributor Guid
	Report a bug

	Contribute code

	Translate JSXC into your language

	Announce

	API
	General

	User interface

	Development

	Account

	Contact

	MultiUserContact extends Contact

	Services

	How to’s
	Screen Sharing

	WebRTC how to

	File Transfer

	Using JSXC on Windows with IIS

	Development
	Developer notes

	Creating a release

	References
	External REST specification

Getting Started

Contents:

	Requirements
	Web server

	XMPP server

	Installation
	JSXC for Nextcloud

	JSXC for WordPress

	JSXC for Ilias

	JSXC for SOGo

	Overview

	Include

	Configure

	Customize style

	Enjoy

Requirements

Obviously you need a running web server [http://www.webdevelopersnotes.com/hosting/list_of_web_servers.php3]
and a XMPP server [http://xmpp.org/xmpp-software/servers/] with BOSH support.

Web server

Apache

If not already done, install apache on your Debian-based distribution:

sudo apt install apache2

Enable the apache proxy module:

sudo a2enmod proxy
sudo a2enmod proxy_http

Add the proxy definition to your vhost configuration of your host-application
server (e.g. /etc/apache/sites-available/default):

ProxyPass /http-bind/ http://localhost:5280/http-bind/
ProxyPassReverse /http-bind/ http://localhost:5280/http-bind/

Reload apache configuration:

sudo service apache2 reload

Finished!

Lighttpd

Enable the mod_proxy module and add the proxy definition in
/etc/lighttpd/lighttpd.conf:

server.modules += ("mod_proxy")
proxy.server = (
 "/http-bind" => (
 ("host" => "127.0.0.1", "port" => 5280)
)
)

Here is an alternative example of a vhost config.

In the lighttpd.conf enable the mod_proxy module:

server.modules = (
 ...
 "mod_proxy"
 ...
)
...
include all files that are under vhosts
include_shell "cat /etc/lighttpd/vhosts/*.conf"

and in vhosts/cloud.myserver.com.conf:

$HTTP["host"] == "cloud.myserver.com" {
 ...
 proxy.server = (
 "/http-bind" => (
 ("host" => "127.0.0.1", "port" => 5280)
)
)
}

Nginx

Enable the proxy pass in your Nginx vhost config:

server {
 ...
 location /http-bind {
 proxy_pass http://127.0.0.1:5280;
 proxy_set_header Host $host;
 tcp_nodelay on;

 }
}

XMPP server

Prosody

If you encounter problems with BOSH, please add these lines to prosody.cfg.lua:

consider_bosh_secure = true
cross_domain_bosh = true

Ejabberd

Installation

Prebuild packages:

	JSXC for Nextcloud

	JSXC for WordPress

	JSXC for Ilias

	JSXC for SOGo

Overview

	Install web server, xmpp server, (bosh server)

	Add jQuery [https://jquery.com] to your site

	Download and extract jsxc [https://github.com/jsxc/jsxc/releases/latest] (you have to use the tar file) to a folder of your choice (e.g. jsxc.example)

	Create two folders in your directory css and js

	Create a file in each folder: jsxc.example.css in css and jsxc.example.js in js

	Adjust permissions

Your folder structure should now look like:

- jsxc.example/
 - jsxc/
 - css/
 - jsxc.example.css
 - js/
 - jsxc.example.js

Include

Now include all these files in your template:

<!-- Javascript -->
<script src="/jquery.min.js"></script>
<script src="jsxc.example/jsxc/jsxc.bundle.js"></script>
<script src="jsxc.example/js/jsxc.example.js"></script>

<!-- Stylesheets -->
<link href="jsxc.example/jsxc/styles/jsxc.bundle.css" media="all" rel="stylesheet" type="text/css" />
<link href="jsxc.example/css/jsxc.example.css" media="all" rel="stylesheet" type="text/css" />

Configure

Add the following lines to our jsxc.example.js:

$(function() {
 let jsxc = new JSXC({
 loadConnectionOptions: function(username, password) {
 return Promise.resolve({
 xmpp: {
 url: '/http-bind/',
 domain: 'localhost',
 }
 });
 }
 });

 let formElement = $('#form');
 let usernameElement = $('#username');
 let passwordElement = $('#password');

 jsxc.watchForm(formElement, usernameElement, passwordElement);
});

Adjust the values according to your application.

Customize style

TODO

Enjoy

Now you should be ready to go.

JSXC for Nextcloud

Warning

JSXC assumes that you are using the same credentials for your Nextcloud and XMPP server.

Requirements

TODO

Get it

Go to your app store and enable the JavaScript XMPP Client.

Configure it

Go to the Nextcloud admin page:

	BOSH URL

	The URL to your bosh server (e.g. /http-bind/). Please be aware of the same-origin-policy.
If your XMPP server doesn’t reside on the same host as your OwnCloud, use the Apache ProxyRequest
as described in our prepare Apache guide [https://github.com/jsxc/jsxc/wiki/Prepare-apache].

	XMPP domain

	The domain of your Jabber ID.

	XMPP resource

	The resource of your JID. If you leaf this field blank a random resource is generated.

	TURN url

	The url to your TURN server. You get a free account on http://numb.viagenie.ca

	TURN username

	If no username is set, the TURN REST API is used.

	TURN credential

	If no credential is set, the TURN REST API is used.</dd>

	TURN secret

	Secret for TURN REST API.

	TURN ttl

	Lifetime of credentials.

Internal JSXC XMPP server

OJSXC implements a minimal XMPP server, just enough such that JSXC works.
It is meant as a starting point, as long as you only run JSXC on Nextcloud.
As soon as you require more features (external clients, server-to-server
communications, …) you should install a full-fledged XMPP server
(they are pretty easy to install).

JSXC for WordPress

In addition to the WordPress installation you need a running XMPP server
with BOSH support. Next you have to configure your XMPP server, maybe
activate your BOSH module and to make sure, that your BOSH Server is
reachable by your website. If your XMPP server supports CORS [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS]
everything should be fine.

	Install web server, xmpp server, (bosh server)

	Download and extract [jsxc](https://github.com/jsxc/jsxc/releases) to a folder of your choice inside of your WordPress theme folder (e.g. /data/mydomain.com/webroot/wp-content/themes/mytheme/jsxc).

	Create a jsxc_client.js file in your scripts directory (e.g. /data/mydomain.com/webroot/wp-content/themes/mytheme/js)
and insert the following code into it:

$(function($) {
jsxc.init({
 loginForm: {
 form: '#page-login-form',
 jid: '#page-user-login',
 pass: '#page-user-pass'
 },
 logoutElement: $('#logout-element'),
 root: '../jsxc/',
 displayRosterMinimized: function() {
 return true;
 },
 xmpp: {
 url: 'http://YOUR_XMPP_SERVER.com:7070/http-bind/',
 domain: 'YOUR_DOMAIN',
 resource: 'jsxc'
 }
});
});

Replace YOUR_DOMAIN with the domain of you XMPP server and http://YOUR_XMPP_SERVER.com:7070/http-bind/
with a correct URL of your BOSH server. Also replace #page-login-form, #page-user-login, #page-user-pass
and #logout-element with correct id’s of your site.

	Create a jsxc-custom.css file inside of the styles directory of your site (e.g. /data/mydomain.com/webroot/wp-content/themes/mytheme/css/).

	Insert the following lines of code into some shared page (e.g. header.php):

<link href="<?php echo get_template_directory_uri(); ?>/jsxc/css/jquery-ui.min.css" media="all" rel="stylesheet" type="text/css" />
<link href="<?php echo get_template_directory_uri(); ?>/jsxc/css/jsxc.css" media="all" rel="stylesheet" type="text/css" />
<link href="<?php echo get_template_directory_uri(); ?>/jsxc/css/jsxc.webrtc.css" media="all" rel="stylesheet" type="text/css" />
<link href="<?php echo get_template_directory_uri(); ?>/css/jsxc-custom.css" media="all" rel="stylesheet" type="text/css" />
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/lib/jquery.min.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/lib/jquery.ui.min.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/lib/jquery.colorbox-min.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/lib/jquery.slimscroll.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/lib/jquery.fullscreen.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/lib/jsxc.dep.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/jsxc/jsxc.min.js"></script>
<script src="<?php echo get_template_directory_uri(); ?>/js/jsxc_client.js"></script>

Verify that jquery is not loaded twice, otherwise the client will not work correctly.
6. Open the main page of your site and notice the jsxc is working.
7. Investigate the CSS styles of jsxc and overwrite the required styles in jsxc-custom.css to match your site’s UI.

JSXC for Ilias

Warning

The Ilias version of JSXC is currently unmaintained.

Get the code

Packed version

Download the latest version from releases <https://github.com/jsxc/jsxc.ilias/releases>
and extract it to ILIAS_DIR/Customizing/global/plugins/Services/UIComponent/UserInterfaceHook/.

Development version

cd ILIAS_DIR/Customizing/global/plugins/Services/UIComponent/UserInterfaceHook/
git clone https://github.com/sualko/jsxc.ilias ijsxc
cd ijsxc
git submodule update –init –recursive

Configuration

Rename config.inc.php.sample to config.inc.php and adjust the values for XMPP server,
BOSH url and XMPP domain and the values for WebRTC.

JSXC for SOGo

Warning

The SOGo version of JSXC is currently unmaintained.

Get the code

Packed version

Download the latest version from releases [https://github.com/jsxc/jsxc.sogo/releases]
and extract it to /usr/lib/GNUstep/SOGo/WebServerResources/.

Development version

cd /opt
git clone https://github.com/jsxc/jsxc.sogo sjsxc
cd sjsxc
git submodule update --init --recursive
ln -s /opt/sjsxc /usr/lib/GNUstep/SOGo/WebServerResources/

JSXC Configuration

It is good to first make sure you can connect and established XMPP communications
before configuring the WebRTC part (which should anyway work most of the time
right off with default configuration).

Rename sjsxc/js/sjsxc.config.sample.js to sjsxc/js/sjsxc.config.js
and adjust the values for xmpp server, bosh url and xmpp domain.

Example

Here below is an example of a working config file with few options although
sufficient to get JSXC plugin to connect to your XMPP server.

File sjsxc.config.js:

/**
* feel free to browse through ./jsxc/src/jsxc.options.js to see possible configurations options
**/

var sjsxc = {};
sjsxc.config = {
 /** enable chat by default? */
 enable: true,

 /** JSXC options. */
 jsxc: {
 xmpp: {
 /** url to bosh server binding. Adapt port to the one you declared in your XMPP server's config */
 url: 'https://xmpp.example.com:7443/http-bind/',

 /** domain part of your jid */
 domain: 'example.com',

 /** which resource should be used? Blank, means random. */
 resource: '',

 /** Allow user to overwrite xmpp settings? */
 overwrite: true,

 /** Should chat start on login? */
 onlogin: true
 }
 }
};

Note

it might be a good idea to use a reverse proxy for reaching the BOSH server
(url parameter then becoming https://xmpp.example.com/http-bind/,
otherwise tight-up networks would prevent the user to connect to XMPP’s port.

SOGo configuration

Add SOGoUIAdditionalJSFiles to your sogo config (/etc/sogo/sogo.conf).

Packed version

{
 [...]

 SOGoUIAdditionalJSFiles = (
 "sjsxc/js/lib/jquery.min.js", // only SOGo v3
 "sjsxc/js/lib/jquery.ui.min.js",
 "sjsxc/js/jsxc/lib/jquery.slimscroll.js",
 "sjsxc/js/jsxc/lib/jquery.fullscreen.js",
 "sjsxc/js/jsxc/lib/jsxc.dep.min.js",
 "sjsxc/js/jsxc/jsxc.min.js",
 "sjsxc/js/sjsxc.config.js",
 "sjsxc/js/sjsxc.js"
);

 [...]
}

Development version

{
 [...]

 SOGoUIAdditionalJSFiles = (
 "sjsxc/js/lib/jquery.min.js", // only SOGo v3
 "sjsxc/js/lib/jquery.ui.min.js",
 "sjsxc/js/jsxc/dev/lib/jquery.slimscroll.js",
 "sjsxc/js/jsxc/dev/lib/jquery.fullscreen.js",
 "sjsxc/js/jsxc/dev/lib/jsxc.dep.js",
 "sjsxc/js/jsxc/dev/jsxc.js",
 "sjsxc/js/sjsxc.config.js",
 "sjsxc/js/sjsxc.js"
);

 [...]
}

Restart sogo service

sudo service sogo restart

Debug

First off, make sure your BOSH server is accessible, and that the certificate is valid for HTTPS.
One way to do that is prepare a generic test file (_testBosh.txt_) that you’ll call via curl command :

Content of the file testBosh.txt:

<body content='text/xml; charset=utf-8'
 from='user@localhost'
 hold='1'
 rid='1573741820'
 to='localhost'
 wait='60'
 xml:lang='en'
 xmpp:version='1.0'
 xmlns='http://jabber.org/protocol/httpbind' xmlns:xmpp='urn:xmpp:xbosh'/>

Save the file locally on your computer and run:

curl -X POST -d@testBosh.txt https://xmpp.example.com:7443/http-bind/

If you get this kind of output, you are good to go as far as BOSH access to XMPP server is concerned, with valid certificate for HTTPS access.

<body xmlns="http://jabber.org/protocol/httpbind" xmlns:stream="http://etherx.jabber.org/streams"
 from="example.com" authid="55j3i8xlx2" sid="55j3i8xlx2" secure="true"
 requests="2" inactivity="30" polling="5" wait="60">
 <stream:features>
 <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>
 <session xmlns="urn:ietf:params:xml:ns:xmpp-session">
 <optional/>
 </session>
 </stream:features>
</body>

Finally, JSXC core being all about Javascript, you need to open your browser
console (Ctrl-Shift-i on Firefox) and filter all JS information.

Next

Once JSXC is well anchored in your SOGo interface and you have a fully functionnal OTR-capable integrated chat,
it is now time to test and use video chat.

Contributor Guid

There are plenty of ways to give something back to the open source community.
Following you find a couple of them for JSXC and no matter which you choose,
we appreciate every help.

Report a bug

You found a bug in a stable release of JSXC? Please open a new issue for it
on our issue tracker [https://github.com/jsxc/jsxc/issues]. You want to
minimize the number of bugs in stable releases?
Just watch our repository [https://github.com/jsxc/jsxc/issues] or follow us on
twitter to receive notifications about new prereleases.

Please provide the following points in your issue:
- Which jsxc version number do you use?
- In which system do you use jsxc? (e.g. nextcloud, sogo, …)
- Can you reproduce your issue? If yes, how?
- Which browser and browser version do you use?
- Do you have any browser plugins enabled?
- Do you see any errors in your javascript console (ctrl+shift+I)?
- Which messages appear in your javascript console if you enable debugging?
- Do you have any related entries in your XMPP server log or your host system (e.g. nextcloud, sogo, …)?

Contribute code

You find detailed information in our developer notes, but the following steps describes the general process.

	Fork the corresponding repository

	Create a local branch for your fix

	Commit your changes and push your created branch to your fork

	Open a new pull request into our master branch

A good way to get familiar with JSXC to work on a starter issue [https://github.com/jsxc/jsxc/issues?q=is%3Aissue+is%3Aopen+label%3Astarter].

Translate JSXC into your language

JSXC is currently translated into 13 languages [https://webtranslateit.com/en/projects/10365-JSXC/project_locales]
and we are always looking for new translators, which add new or complete existing languages. Interested?
Request an invitation [https://webtranslateit.com/en/projects/10365-JSXC/invitation_request].

[image: _images/charts.png]

Announce

You like JSXC and you have a blog? It would be great if you could write a small post about JSXC.

API

Note

We use a Typescript-like syntax to describe our API. For example a following question mark means that this argument or property is optional.

General

<constructor> JSXC(options?)

You have to initialize JSXC with some options so it can learn about your environment. If you have already some established sessions, those will be restored.

Arguments

	
	options.appName? (string)

	Name of container application (e.g. Nextcloud or SOGo).

Default: "web applications"

	
	options.lang? (string)

	Default language.

Default: "en"

	
	options.autoLang? (boolean)

	Auto language detection.

Default: true

	
	options.rosterAppend? (string)

	Query string for element which should contain your contact list.

Default: "body"

	
	options.rosterVisibility? (“shown”|”hidden”)

	Default roster visibility.

Default: "shown"

	
	options.hideOfflineContacts? (boolean)

	Set to true if you want to hide offline contacts.

Default: false

	
	options.loadOptions? (jid: string, password: string) => Promise<{[id: string]: {[key: string]: any}}>

	If you store option changes with options.onOptionChange you probably
want to restore them on the next login. Just return an object with all id’s
and the corresponding values.

Default: undefined

	
	options.loadConnectionOptions? (username: string, password: string) => Promise<ISettings>

	This option can provide connection options for every form login (form
watcher, login dialog).

Default: undefined

	
	options.onOptionChange? (id: string, key: string, value: any, exportId: () => any) => void

	This function is called every time the user changes a option.

Default: undefined

	
	options.getUsers? (search: string) => Promise<{[uid: string]: string}>

	If you like to provide auto suggestions if the user is adding a contact, you
should add this function. Key has be a JID or UID and value a display name.

Default: undefined

	
	options.RTCPeerConfig.ttl? (number)

	Time-to-live for config from url.

Default: 3600

	
	options.RTCPeerConfig.iceServers? (array)

	ICE servers like defined in http://www.w3.org/TR/webrtc/#idl-def-RTCIceServer;

Default: [{ urls: 'stun:stun.stunprotocol.org' }]

	
	options.onlineHelp? (string)

	Default: http://www.jsxc.org/manual.html

	
	options.storage? (localStorage|sessionStorage)

	Storage backend. Has to implement the Storage interface of the Web Storage API.

Default: localStorage

	
	options.disabledPlugins? (array<string>)

	Default: []

	
	options.connectionCallback? ((jid: string, status: number, condition?: string) => void)

	Default: undefined

	
	options.onUserRequestsToGoOnline? (() => void)

	If the user requests to go online again, this function is called. Default: The login dialog is shown.

Default: loginDialog

jsxc.numberOfCachedAccounts: number

Number of restored connections.

jsxc.start(boshUrl, jid, sid, rid)

With JSXC you can also continue a previous established BOSH session.

Arguments

	
	boshUrl (string)

	The URL of your BOSH service.

	
	jid (string)

	Your Jabber Id with or without resource. E.g. klaus@jsxc.org or klaus@jsxc.org/desktop.

	
	sid (string)

	Your Session ID from your pre-bind session.

	
	rid (string)

	Your Request ID from your pre-bind session.

Returns

	Promise<void>

	Promise is resolved if the connection is established and the UI loaded.

jsxc.start(boshUrl, jid, password)

Start a new connection with the given service and credentials.

Arguments

	
	boshUrl (string)

	The URL of your BOSH service.

	
	jid (string)

	Your Jabber Id with or without resource. E.g. klaus@jsxc.org or klaus@jsxc.org/desktop.

	
	password (string)

	Corresponding password to your Jabber Id.

Returns

	Promise<void>

	Promise is resolved if the connection is established and the UI loaded.

jsxc.start()

Show an empty contact list which allows the user to connect to a service by itself.

Returns

	Promise<void>

	Promise is resolved if the UI is loaded.

jsxc.startAndPause(boshUrl, jid, password)

Same as jsxc.start, but just connects to the XMPP and stops afterwards. Can be used to connect before a form is submitted, or similar.

Returns

	Promise<void>

	Promise is resolved if the connection is established.

jsxc.watchForm(formElement, usernameElement, passwordElement)

Watch a login form and use credentials to establish an XMPP connection. You can
provide options with options.loadConnectionOptions.

Arguments

	
	formElement (JQuery)

	Form element which should be watched for a submit event.

	
	usernameElement (JQuery)

	If the form is submitted get the username from this element.

	
	passwordElement (JQuery)

	If the form is submitted get the password from this element.

jsxc.watchLogoutClick(element)

Watch a logout element and disconnect JSXC before the original click action is processed.

Arguments

	
	element (JQuery)

	Logout element which should be watched for a click event.

jsxc.showLoginBox(username?)

Opens a login modal with field for username and password.

Arguments

	
	username? (string)

	Username for login can be predefined.

jsxc.disconnect()

Disconnect all accounts.

Returns

	Promise<void>

	Promise is resolved if all accounts are disconnected.

User interface

jsxc.addMenuEntry(options)

Add a new entry to the main menu.

Arguments

	
	options.id (string)

	ID of your menu entry.

	
	options.handler ((ev) => void)

	This handler is called if the user clicks on the menu entry.

	
	options.label (string)

	Every menu entry needs a text label.

	
	options.icon? (string)

	If you provide a URL or Base64 encoded image, an icon is shown beside the label.

	
	options.offlineAvailable? (boolean)

	If your entry should also be clickable while the user is offline, set this to true.
Default: false

jsxc.toggleRoster()

Show or hide the contact list.

Development

jsxc.enableDebugMode()

Enable debug mode for more log messages.

jsxc.disableDebugMode()

Disable debug mode.

jsxc.deleteAllData()

Delete all data stored by JSXC in your data backend.

Warning

This function is only available in debug mode.

Returns

	number

	Number of deleted items.

jsxc.getAccount(uid)

Arguments

	
	uid (string)

	UID of account. Usually the bare jid.

Returns

	Account

	Account object.

Account

account.getContact(jid)

Arguments

	
	jid (string)

	Bare JID of contact.

Returns

	Contact|MultiUserContact

	Depending on the kind of user, a contact or multi-user contact is returned.

account.createMultiUserContact(jid, nickname, displayName?, password?)

Creates a new MUC room.

Arguments

	
	jid (string)

	Bare JID of new multi-user contact.

	
	nickname (string)

	Desired nickname in MUC room.

	
	displayName? (string)

	Contact name in roster.

	
	password? (string)

	Protect room with password.

Returns

	MultiUserContact

	Multi-user contact is returned.

Contact

contact.openChatWindow()

Opens the chat window.

contact.openChatWindowProminently()

Opens the chat window and highlights it.

contact.addToContactList()

Adds contact to roster or bookmark storage.

MultiUserContact extends Contact

multiUserContact.join()

Join the given room.

multiUserContact.leave()

Leave the given room.

multiUserContact.destroy()

Destroy the given room.

multiUserContact.getRoomConfigurationForm()

Returns

	JSON

	Room configuration form as json.

multiUserContact.submitRoomConfigurationForm(form)

Arguments

	
	form (JSON)

	The filled room configuration form previously retrieved via multiUserContact.getRoomConfigurationForm().

Services

JSXC.register(service, domain, callback?)

Arguments

	
	service (string)

	The URL of your BOSH service.

	
	domain (string)

	Register a new user with this domain.

	
	callback? ((form: Form) => Promise<Form>)

	If you like to display a custom form, provide a callback.

Returns

	Promise<void>

	Promise is resolved if the user was successfully registered.

JSXC.testBOSHServer(url, domain)

Allows you test if a BOSH server is reachable and serving the given domain.

Arguments

	
	url (string)

	URL which you like to test.

	
	domain (string)

	Domain which you like to test.

Returns

	Promise<string>

	If the BOSH server is reachable the promise resolves with a constant success string.

In the error case the promise is resolved with an error object. You can call toString() to get the
error message in english or getErrorCode() to get a more generic error code. You find a list of all
messages and codes in src/api/v1/testBOSHServer.ts.

JSXC.version

Shows the current version of JSXC.

Returns

	string

	Version number of JSXC.

How to’s

Contents:

	Screen Sharing

	WebRTC how to

	File Transfer

	Using JSXC on Windows with IIS

Screen Sharing

Screen sharing is only supported by Chrome and Firefox (before version 52)
through a domain-specific extension. This means, that every domain which
tries to access the desktop needs to release his own extension. There
are example implementations for Firefox [https://github.com/otalk/getScreenMedia/tree/master/firefox-extension-sample]
and Chrome [https://github.com/otalk/getScreenMedia/tree/master/chrome-extension-sample] which are easy to adapt.

Starting from version 52, Firefox doesn’t require an extension
for screen sharing.

Screen sharing also requires an encrypted connection (https),
otherwise the browser will reject any screen media request.

WebRTC how to

Why STUN/TURN?

A STUN (Session Traversal Utilities for NAT) server will allow our two
end-nodes to know what their public IP is, as we most often sit behind
a router in a LAN with private IP addresses. It is only used for that
“getting to know each other” phase used to gather all informations
about how (if proven possible) establishing our peer-to-peer WebRTC
communication.

A TURN (Traversal Using Relay NAT) server is a relay server used when
peer-to-peer connection cannot be established. In that case your only
option is to use an external server as a relay. Symmetrical NAT,
encountered more often in corporate networks, is typically the kind
of NAT for which a TURN server will be used as a workaround to
establish communication.

Public STUN/TURN Servers

	stun.stunprotocol.org

	(STUN only) is used by default in JSXC. Is known to be prone to DDoS attacks [https://groups.google.com/forum/#!topic/stunprotocol/7b7i6jlAVTs].

Warning

For Russia and parts of Ukraine, this server resolves to 127.0.0.1
(probably as a result of anti-DDoS actions taken by server maintainers).
If you experience problems with WebRTC connectivity in JSXC,
first of all check the STUN server availability.

URL: stun:stun.stunprotocol.org

	Google STUN server

	(STUN only)

URL: stun:stun.l.google.com:19302

	numb.viagenie.ca

	(STUN/TURN) is a public STUN/TURN server. Requires registration.

Warning

This server is known not to work with Firefox (fails to collect srflx and relay entries).

URL: turn:numb.viagenie.ca

Private STUN/TURN Server

Install and configure coturn

Below commands are for Debian, adjust to you distribution’s package manager. We
need openssl version 1.0.2 minimum to support DTLS (Datagram TLS). I used the
testing repo to install recent versions of both openssl and coturn:

apt install openssl/stretch coturn/stretch

You should get validated checks regarding security protocols supported when restarting coturn:

0: TLS supported
0: DTLS supported
0: DTLS 1.2 supported
0: TURN/STUN ALPN supported
0: Third-party authorization (oAuth) supported
0: GCM (AEAD) supported
0: OpenSSL compile-time version: OpenSSL 1.0.2j 26 Sep 2016 (0x100020af)

Now for the configuration (in /etc/turnserver.conf), a minimum working conf dims down to:

listening-port=3478
tls-listening-port=5349
alt-listening-port=3479
alt-tls-listening-port=5350
listening-ip=PUB.IP.NUM.1
listening-ip=PUB.IP.NUM.2
relay-ip=PUB.IP.NUM.1
min-port=49152
max-port=65535
verbose
fingerprint
use-auth-secret
static-auth-secret
userdb=/var/lib/turn/turndb
realm=example.com
cert=/etc/ssl/certs/coturn_ca.crt
pkey=/etc/ssl/private/coturn.key
dh-file=/etc/turn/dhparam.pem
no-stdout-log
log-file=/var/log/turn/turn.log

no-sslv3
no-tlsv1

This is set up to enable STUN features as well as TURN features. The TLS key/certs
have to be fully functional, as TLS is a requirement and not an option (works
perfectly fine with Letsencrypt certificate). You need 2 public IPs for STUN to do its magic.

coturn authentication

For TURN, because it handles the whole stream, we want it to only accept relaying
authenticated nodes. To do that, you need to create at least a user account
and a shared secret. They both will be used for ephemeral credential validation.
In your terminal, generate an account and declare your shared secret via
turnadmin command:

turnadmin -a --db /var/lib/turn/turndb -u username -r example.com -p XXXXXX
turnadmin --db /var/lib/turn/turndb -r example.com --set-secret=XXXXXXXXXXXX

Note

from what I gathered, the user password is not used for ephemeral
credentials, only for long-term credentials, which are not secure.

Configure STUN/TURN server in JSXC

Static

You can pass your STUN/TURN configuration directly to JSXC as init option
with the key RTCPeerConfig.iceServers using the format described in the
W3C WebRTC working draft [https://www.w3.org/TR/webrtc/#rtciceserver-dictionary]:

RTCPeerConfig: {
 /** ICE servers like defined in http://www.w3.org/TR/webrtc/#idl-def-RTCIceServer */
 iceServers: [{
 urls: ['stun:stun.domain1.org', 'stun:stun.domain2.org']
 }, {
 urls: 'turn:turn.domain3.org',
 username: 'user',
 credential: 'pass'
 }]
}

Dynamic

If you like to generate STUN/TURN parameters on the fly, just pass
RTCPeerConfig.url as init option to JSXC. The endpoint has to respond
with a JSON encoded representation of RTCPeerConfig [https://github.com/jsxc/jsxc/blob/master/src/jsxc.lib.options.js#L244]:

RTCPeerConfig: {
 url: '/getWebRTCConfig.php',

 /** If true, jsxc send cookies when requesting RTCPeerConfig from the url above */
 withCredentials: false,
}

Resources

	WebRTC Troubleshooter [https://test.webrtc.org]

	tests all your WebRTC parameter, like Camera, Network or Connectivity.

	Trickle ICE [https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/]

	can be used to check general STUN/TURN server availability and functioning.

	NAT-Analyzer [http://nattest.net.in.tum.de/]

	is a tool to check your NAT type (full cone, symmetric etc.) Requires Java.

File Transfer

Methods

In general JSXC supports currently data channels (WebRTC) and http upload for file transfer.
If http upload is enabled it is the preferred method. If the file is larger as the maximum
upload limit, JSXC will fall back to data channels if available.

HTTP Upload

To use http upload your server should support CORS. If it doesn’t you have to proxy
those request and add the CORS header by yourself as in the example shown.

ejabberd Configuration

Ejabberd mod_httpupload [https://docs.ejabberd.im/admin/configuration/#modhttpupload]:

listen:
...
-
 port: 5443
 module: ejabberd_http
 tls: true
 certfile: "/etc/ejabberd/certificate.pem"
 request_handlers:
 ...
 "upload": mod_http_upload
 ...
...

modules:
...
mod_http_upload:
 docroot: "/ejabberd/upload"
 put_url: "https://@HOST@:5443/upload"
 custom_headers:
 "Access-Control-Allow-Origin": "*"
 "Access-Control-Allow-Methods": "OPTIONS, HEAD, GET, PUT"
 "Access-Control-Allow-Headers": "Content-Type"
...

Warning

Ejabberd ignores custom headers if your put url is different from your
xmpp domain. See processone/ejabberd#1482 [https://github.com/processone/ejabberd/issues/1482)].

Prosody configuration

Prosody mod_http_upload [https://modules.prosody.im/mod_http_upload.html]:

Component "localhost" "http_upload"
http_external_url = "https://EXTERNAL_URL/"

http_upload_file_size_limit = 10485760

Apache configuration:

<VirtualHost *:443>
 ServerName EXTERNAL_URL

 ...

 <Location /upload/>
 # Allow cross site requests
 Header always set Access-Control-Allow-Origin "*"
 Header always set Access-Control-Allow-Headers "Content-Type"
 Header always set Access-Control-Allow-Methods "OPTIONS, PUT, GET"

 RewriteEngine On

 # modify status code of preflight request
 RewriteCond %{REQUEST_METHOD} OPTIONS
 RewriteRule ^(.*)$ $1 [R=200,L]
 </Location>

 SSLProxyEngine on

 # Just for testing
 #SSLProxyVerify none
 #SSLProxyCheckPeerCN off
 #SSLProxyCheckPeerName off
 #SSLProxyCheckPeerExpire off

 ProxyPass /upload/ https://localhost:5281/upload/
</VirtualHost>

WebRTC data channel

See our special WebRTC page.

Using JSXC on Windows with IIS

I’m not going to go in full details yet on how to fully setup each point.

I actually have a domain, and SSL certificates that I created using
Let’s Encrypt, and I’m using https for my entire setup. So this might
make things tricky for you if you are only using http with no actual
domain at all, but http://localhost/ should just be fine I think??? lol.

I will assume for the most part you do have some knowledge and experience
with IIS, php, MySQL, permissions, configuration files, and etc… You
can search online using Google or other for “How to secure IIS”, “How to secure wtv”.

My setup:

	OS: Windows Server 2016 Data Center (Can be used with any OS that supports IIS)

	WWW Server: IIS 10 (Assumed installed)

	IIS Web Platform Installer [https://www.microsoft.com/web/downloads/platform.aspx] v5 so you can install next two easy

	IIS Application Request Routing [https://www.iis.net/downloads/microsoft/application-request-routing] for reverse proxy

	IIS URL ReWrite [https://www.iis.net/downloads/microsoft/url-rewrite] for reverse proxy

	DNS Server: BIND9 [https://www.isc.org/downloads/bind/)tocreateinternaldomains(Assumedinstalled/Optional]

	php: v7.2.2 [http://windows.php.net/download)forWindows(Assumedinstalled]

	XMPP Server: ejabberd [https://www.ejabberd.im] v18.01

	DB: MySQL [https://www.mysql.com/downloads/)CommunityEdition(Assumedinstalled/Optional]

Step 1

Make sure your OS, IIS, php, MySQL, Web Application Platform, Application Request Routing,
and URL ReWrite module are installed, configured, and working. If you plan on actually
testing this outside of localhost, don’t forget to open your firewall ports on the server,
port forwarding in your router, and to actually get a domain instead of making fake internal
domains local to the server using BIND9 DNS server, any other DNS server, or even just using the host file.

Install ejabberd XMPP Server on the same machine, just follow the steps in the installer,
once it ask you for host name you can put domain.com or wtv domain you plan on using for
testing. Run the “Start ejabberd shortcut” created by the installer on the desktop. Your
web browser will open and say the ejabberd has started if all went well. Login to the admin
page http://localhost:5280/admin/ with the user/pwd you typed in the ejabberd installer.
You can use this admin page to create more users but for now we can do testing with your
admin@domain.com account created during installation of ejabberd.

Important

Once ejabberd is installed and running, open up your web browser and test “http://localhost:5280/http-bind/”
or “http://localhost:5280/bosh/” (they both do the same thing) to confirm they are accessible and working.
This is what we are going to create a URL ReWrite rule or aka alias for using reverse proxy”.

Step 2

Make a folder called www on any drive outside Inetpub. This will make your life more easy
for editing instead of having to be in admin mode all the time, security, and backing up.

[image: https://s25.postimg.org/94ccfdien/www-location.png]
Change security permissions to allow the user IIS_IURS Read and Execute permissions,
depending on what you are doing some subfolders or files might need write access to.

[image: https://s25.postimg.org/byfhstsan/www-permissions.png]

Step 3

Decide now if you want JSXC to be a domain or subdomain. Just to be clean, I name my folders
like domain.com for a folder/domain or sub.domain.com for a folder/subdomain aka “C:wwwdomain.com”
or “C:wwwsub.domain.com”. I’ll be using domain.com for the example.

Create a folder called domain.com in your www folder and dump the JSXC files in this folder.
Configure your JSXC install. I’m only using the internal database for the ejabberd server.

Important

Very important create another folder called bosh or http-bind in your domain.com
folder, this will be used to create the reverse proxy to allow JSXC XMPP Client
to talk with the ejabberd XMPP Server. It will also store a Web.config file that
actually has the settings to do the reverse proxy. So your link would be http://domain.com/bosh/
or http://domain.com/http-bind/” wtv you decided ejabbered works with both links
using /bosh/ or /http-bind/ same as JSXC does.** – I would like to thank
@skyfox675 for the help on this one and showing his config file sample,
because I had never done proxies using IIS before.

By now you should of setup something like roundcube webmail, nextcloud, or owncloud to
allow you to use JSXC as a plugin/addon, if not you will have to make your own little html or
php app to allow you to even use JSXC. Just follow the JSXC installation [https://www.jsxc.org/installation.html]
section, and pay attention to the “Do you want to integrate JSXC into your own web application [https://github.com/jsxc/jsxc/wiki/Install-jsxc]”.

Step 4

Important

Enabling IIS as a proxy server using ARR.

You have to click on the server itself in the IIS Manager on the left, if you have installed
Application Routing and Request you should see Application Routing and Request Cache as an
icon on the right, double click the icon.

[image: https://s25.postimg.org/5kv02y2e7/iis-proxy-location.png]
Now that you have Application Routing and Request Cache open, look to the right you
should see “Server Proxy Settings” so single click it.

[image: https://s25.postimg.org/sz2zevs1b/iis-proxy-location-settings.png]
Don’t worry about all the settings on this page, they can be left to default, all you
need to do is enable it and click apply on the right.

[image: https://s25.postimg.org/byk36a7b3/enable-proxy.png]

Step 5

Important

Setting up the Web.config file with rules for URL ReWrite.

You can do this two ways either using IIS Manager, expand your website/domain.com and click
on the subfolder bosh or http-bind wtv you decided to name it, and using the GUI to create the reverse proxy url rewrite.

[image: https://s25.postimg.org/45tfebw73/urwl-rewrite-location.png]
Or just creating a text file using notepad and saving it in your bosh or http-bind folder
calling Web and saving it as a config file not a txt file making it be “Web.config”.

I used the GUI to make the server variables needed for this ReWrite to work, and used
notepad to actually write the config file provided by @skyfox675 in the provided
sample [https://github.com/jsxc/jsxc/issues/353#issuecomment-366457031].

You need to create some server variables:
1. HTTP_X_FORWARDED_PROTO
2. HTTP_X_FORWARDED_HOST
3. HTTP_X_FORWARDED_PORT
4. ORIGINAL_HOST21

[image: https://s25.postimg.org/mldwbt2mn/server-variables-location.png]
[image: https://s25.postimg.org/ic969n733/server-variables.png]
So now travel to Windows File Explorer to “C:wwwdomain.comhttp-bind” or C:wwwdomain.combosh”
and create a web.config file if there is none. You can use notepad these files are just text files
in the end. Put this text in your new config file, if there was one already created just add this
into it by modifying what IIS generated. I hope you know what config files are and how to use
them they end up just being xml being just text lol. Don’t forget to edit the host variable to be
your domain, in the example I have it set to domain.com on the inboundrule, and for the outboundrule
there is a “/(http-bind)” you could do “/(bosh)” if you wanted, same goes for the localhost:5280 section:

<!-- THANKS TO @skyfox675 for providing a sample -->
<!-- I modified the sample to fit my needs and versions -->
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.webServer>
 <rewrite>
 <rules>
 <rule name="ReverseProxyInboundRuleBOSH" stopProcessing="true">
 <match url="(.*)" />
 <action type="Rewrite" url="http://localhost:5280/http-bind/{R:1}" appendQueryString="true" />
 <serverVariables>
 <set name="ORIGINAL_HOST21" value="{HTTP_HOST}" />
 <set name="HTTP_X_FORWARDED_PROTO" value="https" />
 <set name="HTTP_X_FORWARDED_PORT" value="5443" />
 <set name="HTTP_X_FORWARDED_HOST" value="domain.com" />
 </serverVariables>
 </rule>
 </rules>
 <outboundRules>
 <rule name="ReverseProxyOutboundRuleBOSH" preCondition="ResponseIsHtml1">
 <match filterByTags="A, Form, Img" serverVariable="RESPONSE_LOCATION" pattern="^http://[^/]+/(.*)" />
 <action type="Rewrite" value="http://{ORIGINAL_HOST21}/{C:1}/{R:1}" />
 <conditions>
 <add input="{ORIGINAL_HOST21}" pattern=".+" />
 <add input="{URL}" pattern="^/(http-bind)" />
 </conditions>
 </rule>
 <preConditions>
 <remove name="ResponseIsHtml1" />
 <preCondition name="ResponseIsHtml1">
 <add input="{RESPONSE_CONTENT_TYPE}" pattern="^text/html" />
 <add input="{RESPONSE_STATUS}" pattern="3\d\d" />
 </preCondition>
 </preConditions>
 </outboundRules>
 </rewrite>
 <httpErrors errorMode="DetailedLocalOnly" />
 <directoryBrowse enabled="false" />
 </system.webServer>
</configuration>

What all this does is convert http://domain.com/http-bind/ from the web server side to http://localhost:5280/http-bind”
on the ejabberd xmpp server side on the same machine, could be a different machine if you wanted. This also terminates
https if you are using it at the IIS server, but that’s another issues for another time.

So for every single application you use JSXC client in with ejjaberd server, you would tell it your xmpp server
is located at http://domain.com/http-bind/ so the local machine and remote machines can find the xmpp server,
if you would not do this and only did localhost, the remote machines would never find the xmpp server because locally
to themselves there is no server.

Doing this also allows you to not have to create more bindings in IIS for your website aka virtual-host causing
other issues. My only bindings on IIS for the site I have JSXC running on is port 80 and 443, and I redirect all to 443.

And you are done and things should be working.

Development

Contents:

	Developer notes
	Get code

	Install yarn

	Workflow

	Notes

	Locales

	Creating a release

Developer notes

Get code

Please execute the following commands to get a copy of the code:

Core

git clone https://github.com/jsxc/jsxc.git

Apps

git clone https://github.com/nextcloud/jsxc.nextcloud.git
and/or
git clone https://github.com/jsxc/jsxc.sogo.git
and/or
git clone https://github.com/jsxc/jsxc.ilias.git

Install yarn

We use yarn [https://yarnpkg.com] as our package manager. Please follow there
docs [https://yarnpkg.com/en/docs/install#debian-stable] to install it.

Warning

We used npm [https://www.npmjs.com/] and grunt [http://gruntjs.com/] in the passed to
concatenate, convert, and validate our source files. It’s likely that you still find it
at some places.

First install all dependencies with yarn install. To build the project, just run yarn start
in its top-level directory. If you like to start a development server and watch all files for
changes, some project offer you yarn dev.

Now you are ready for development.

Workflow

	run yarn watch in the project root folder

	make your modifications in src/ and scss/

	check your results on example/index.html

	git add ...

	git commit (should run our pre-commit hook)

	git push

Notes

Yarn commands

A few helpful yarn commands you should know to simplify your life.

	start create a production ready build

	watch create a development build and rerun on file changes

	dev similar to watch, but it will start a development server

	fix beautifies all files and makes sure the pre-commit hook is satisfied

To run a command, execute yarn COMMAND.

Core Structure

TODO

Debugging

Open your Javascript console (e.g. ctrl+shift+I) and enter jsxc.storage.setItem(‘debug’, true) to obtain debug messages.

Locales

We use webtranslateit.com [https://webtranslateit.com/en/projects/10365-JSXC] to organize our translations
and wti [https://webtranslateit.com/en/docs/web_translate_it_client/] to synchronise those.

Creating a release

	update change log

	update translation wti pull --all

	update example

	create build

	increase version number in package.json - run node scripts/build-release.js (use --release for stable releases)

	update documentation

	wiki

	website

	publish to app store, npm and similar

	announce new release

	blog post

	twitter

	mailing list

References

Contents:

	External REST specification

External REST specification

External REST API of the Nextcloud JSXC app [https://github.com/nextcloud/jsxc.nextcloud].

Contents:

	Version 1

	Version 2 (draft)

Version 1

Schema

All API access should over HTTPS, and accessed the https://YOUR_CLOUD/index.php/apps/ojsxc/ajax/.
All data is sent and received as JSON. Every request has to contain a signature to verify the request.

Client Errors

	500 Internal Server Error:

	{"result": "error", "data": {"msg":"An error occured"}}

Header Signature

Every request to an API endpoint needs a valid X-JSXC-SIGNATURE header of the
form HASH_ALGO=hmac(HASH_ALGO, REQUEST_BODY, API_SECRET).

Endpoints

Check Password

POST /externalApi.php

Parameters

	Name

	Type

	Description

	operation

	“checkPassword”

	

	username

	string

	

	password

	string

	

	domain

	string

	The domain is used to check additionally
the password for username@domain (optional)

Response

Status: 200 OK

{
 "result": "noauth"
}

Status: 200 OK

{
 "result": "success",
 "data": {
 "uid": "foobar"
 }
}

User exists

POST /externalApi.php

Parameters

	Name

	Type

	Description

	operation

	“isUser”

	

	username

	string

	

	domain

	string

	The domain is used to test additionally
the user username@domain (optional)

Response

Status: 200 OK

{
 "result": "success",
 "data": {
 "isUser": true
 }
}

Get shared roster

POST /externalApi.php

Parameters

	Name

	Type

	Description

	operation

	“sharedRoster”

	

	username

	string

	

	domain

	string

	The domain is used to get the shared
roster for username@domain (optional)

Response

Status: 200 OK

{
 "result": "success",
 "data": {
 "sharedRoster": {
 "fritz": {
 "name": "Fritz Froh",
 "groups": ["group1", "group2"]
 },
 "georg": {
 "name": "Georg Geizig",
 "groups": ["group3"]
 }
 }
 }
}

Version 2 (draft)

Warning

This version is still in development!

Schema

All API access should over HTTPS, and accessed the https://YOUR_CLOUD/index.php/apps/ojsxc/api/v2/. All
data is sent and received as JSON. Every request has to contain a signature to verify the request.

Client Errors

	500 Internal Server Error:

	{"result": "error", "data": {"msg":"An error occured"}}

Header Signature

Every request to an API endpoint needs a valid X-JSXC-SIGNATURE header of the form HASH_ALGO=hmac(HASH_ALGO, REQUEST_BODY, API_SECRET).

Endpoints

Check Password

POST /checkPassword

Parameters

	Name

	Type

	Description

	username

	string

	

	password

	string

	

	domain

	string

	The domain is used to check additionally
the password for username@domain (optional)

Response

Status: 200 OK

{
 "result": "noauth"
}

Status: 200 OK

{
 "result": "success",
 "data": {
 "uid": "foobar"
 }
}

User exists

POST /isUser

Parameters

	Name

	Type

	Description

	username

	string

	

	domain

	string

	The domain is used to test additionally
the user username@domain (optional)

Response

Status: 200 OK

{
 "result": "success",
 "data": {
 "isUser": true
 }
}

Get shared roster

POST /sharedRoster

Parameters

	Name

	Type

	Description

	username

	string

	

	domain

	string

	The domain is used to get the shared
roster for username@domain (optional)

Response

Status: 200 OK

{
 "result": "success",
 "data": {
 "sharedRoster": {
 "fritz": {
 "name": "Fritz Froh",
 "groups": ["group1", "group2"]
 },
 "georg": {
 "name": "Georg Geizig",
 "groups": ["group3"]
 }
 }
 }
}

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to JavaScript XMPP Client’s documentation!

 		
 Getting Started

 		
 Requirements

 		
 Web server

 		
 XMPP server

 		
 Installation

 		
 JSXC for Nextcloud

 		
 JSXC for WordPress

 		
 JSXC for Ilias

 		
 JSXC for SOGo

 		
 Overview

 		
 Include

 		
 Configure

 		
 Customize style

 		
 Enjoy

 		
 Contributor Guid

 		
 Report a bug

 		
 Contribute code

 		
 Translate JSXC into your language

 		
 Announce

 		
 API

 		
 General

 		
 <constructor> JSXC(options?)

 		
 jsxc.numberOfCachedAccounts: number

 		
 jsxc.start(boshUrl, jid, sid, rid)

 		
 jsxc.start(boshUrl, jid, password)

 		
 jsxc.start()

 		
 jsxc.startAndPause(boshUrl, jid, password)

 		
 jsxc.watchForm(formElement, usernameElement, passwordElement)

 		
 jsxc.watchLogoutClick(element)

 		
 jsxc.showLoginBox(username?)

 		
 jsxc.disconnect()

 		
 User interface

 		
 jsxc.addMenuEntry(options)

 		
 jsxc.toggleRoster()

 		
 Development

 		
 jsxc.enableDebugMode()

 		
 jsxc.disableDebugMode()

 		
 jsxc.deleteAllData()

 		
 jsxc.getAccount(uid)

 		
 Account

 		
 account.getContact(jid)

 		
 account.createMultiUserContact(jid, nickname, displayName?, password?)

 		
 Contact

 		
 contact.openChatWindow()

 		
 contact.openChatWindowProminently()

 		
 contact.addToContactList()

 		
 MultiUserContact extends Contact

 		
 multiUserContact.join()

 		
 multiUserContact.leave()

 		
 multiUserContact.destroy()

 		
 multiUserContact.getRoomConfigurationForm()

 		
 multiUserContact.submitRoomConfigurationForm(form)

 		
 Services

 		
 JSXC.register(service, domain, callback?)

 		
 JSXC.testBOSHServer(url, domain)

 		
 JSXC.version

 		
 How to’s

 		
 Screen Sharing

 		
 WebRTC how to

 		
 Why STUN/TURN?

 		
 Public STUN/TURN Servers

 		
 Private STUN/TURN Server

 		
 Configure STUN/TURN server in JSXC

 		
 Resources

 		
 File Transfer

 		
 Methods

 		
 Using JSXC on Windows with IIS

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Step 4

 		
 Step 5

 		
 Development

 		
 Developer notes

 		
 Get code

 		
 Install yarn

 		
 Workflow

 		
 Notes

 		
 Locales

 		
 Creating a release

 		
 References

 		
 External REST specification

 		
 Version 1

 		
 Version 2 (draft)

_images/charts.png
JSXC
Swodish, Sweden-
Albanian-

Dutch; Flemish, Nether.
Portuguese, Brazi!
Ukgainian, Uaaine
French
Russian
Greelc
Spanish; Castiian
Chinese, Taiwan
Japanese
Turkish, Turkey
Romanian
Polish
Tha
Halian-

English: I
German I

Hangarian, Hungary-
Sioval

Cninsso

Caaen

Vistnamess, Vistnam
avic

Bulgaran

Finnish

Bengai, Bangiadesh
Transisted [Prociread B Untrersisied.

